Sains Malaysiana 52(11)(2023): 3045-3059
http://doi.org/10.17576/jsm-2023-5211-03
Advances in Sago Palm Research: A Comprehensive Review of Recent
Findings
(Kemajuan dalam Penyelidikan Pokok Sagu: Suatu Kajian Komprehensif
Penemuan Terkini)
FIFI HAFIZZAH PENDI1, WEI-JIE YAN1, HASNAIN
HUSSAIN1,*, HAIRUL AZMAN ROSLAN1 & NORZAINIZUL
JULAIHI2
1Centre for Sago Research, Faculty of Resource Science
and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak,
Malaysia
2Land Custody and Development Authority, Level 4, 8
& 12, Wisma Satok, Jalan Satok, 93400 Kuching, Sarawak, Malaysia
Diserahkan:
3 Julai 2023/Diterima: 16 Oktober 2023
Abstract
The sago palm (Metroxylon
sagu Rottb.) is an indigenous plant in Papua New Guinea, Indonesia,
Malaysia, and Thailand. It provides substantial needs to the locals, especially
through the starch it produces in its trunk. Exhibiting remarkable
adaptability, this palm can thrive in challenging environments like swamps and
peat soils. This paper provides an overview of the molecular methods previously
utilised to decipher the genes responsible conferring the characteristics of
sago palm molecular techniques employed to investigate M. sagu molecular
properties include molecular markers, genome walking, rapid amplification of
cDNA ends (RACE), polymerase chain reaction (PCR) and sequencing. Additionally,
this article presents other molecular techniques that can be applied to M. sagu for future crop breeding.
Keywords: Gene expression; genome assembly; Metroxylon sagu; non-trunking; trunking
Abstrak
Pokok sagu (Metroxylon sagu Rottb.) adalah
tumbuhan asli di Papua New Guinea, Indonesia, Malaysia dan Thailand. Pokok sagu
ini sangat berguna kepada masyarakat tempatan dengan menyediakan keperluan
hidup terutamanya tepung sagu yang dihasilkan dalam batang tumbuhan unik ini.
Memiliki daya penyesuaian yang tinggi, pokok sagu boleh hidup pada persekitaran
yang mencabar seperti tanah paya dan tanah gambut. Kertas ini merumuskan teknik
molekul yang pernah digunakan untuk mempelajari dan mentafsir gen yang
bertanggungjawab terhadap ciri pokok sagu. Antara teknik molekul diaplikasikan
ialah penitian genom; kandungan cDNA amplifikasi pantas (RACE); tindak balas berantai polimerase
dan teknik penjujukan.
Kata kunci: Berbatang; himpunan genom; Metroxylon sagu; pengekspresan gen; tak berbatang
RUJUKAN
Abbas,
B. & Ehara, H. 2012. Assessment genetic variation and relationship of sago
palm (Metroxylon sagu Rottb.) in Indonesia based on specific expression
gene (Wx Genes) markers. African Journal of Plant Science 6(12):
314-320. https://doi.org/10.5897/AJPS12.015
Abbas,
B., Renwarin, Y., Bintoro, M.H., Sudarsono, S., Surahman, M. & Ehara, H.
2010. Genetic diversity of sago palm in Indonesia based on chloroplast DNA
(CpDNA) Markers. Biodiversitas Journal of Biological Diversity 11(3):
112-117. https://doi.org/10.13057/biodiv/d110302
Abbas,
B., Bintoro, M.H., Sudarsono, Surahman, M. & Ehara, H. 2009. Genetic
relationship of sago palm (Metroxylon sagu Rottb.) in Indonesia based on
RAPD markers. Biodiversitas Journal of Biological Diversity 10(4):
168-174. https://doi.org/10.13057/biodiv/d100402
Abbas,
B., Dailami, M., Santoso, B. & Munarti. 2017. Genetic variation of sago
palm (Metroxylonsagu Rottb.) progenies with natural pollination by using
RAPD markers. Natural Science 9(4): 104-109.
https://doi.org/10.4236/ns.2017.94010
Abbas,
B., Tjolli, I. & Munarti. 2019. Genetic diversity of sago palm (Metroxylon
sagu) accessions based on plastid CpDNA MatK gene as DNA barcoding. Biodiversitas
Journal of Biological Diversity 21(1): 219-225.
https://doi.org/10.13057/biodiv/d210128
Abbas,
B., Tjolli, I., Dailami, M. & Munarti. 2019. Phylogenetic of sago palm (Metroxylon
sagu) and others monocotyledon based on mitochondrial Nad2 gene markers. Biodiversitas
Journal of Biological Diversity 20(8): 2249-2256.
https://doi.org/10.13057/biodiv/d200820
Abbas,
T., Zahir, Z.A., Naveed, M. & Kremer, R.J. 2018. Limitations of existing
weed control practices necessitate development of alternative techniques based
on biological approaches. Advances in Agronomy 147: 239-280.
https://doi.org/10.1016/bs.agron.2017.10.005
Ahmad,
M.N., Awang Adeni, D.S., Suhaili, N. & Bujang, K. 2022. Optimisation of
pre-harvest sago frond sap for the production of L-lactic acid using Lactococcus
lactis IO-1. Biocatalysis and Agricultural Biotechnology 43: 102435.
https://doi.org/10.1016/j.bcab.2022.102435
Al-Mssallem, I. S., Hu, S., Zhang, X., Lin, Q., Liu, W., Tan, J., Yu, X., Liu, J., Pan, L., Zhang, T., Yin, Y., Xin, C., Wu, H., Zhang, G., Ba Abdullah, M. M., Huang, D., Fang, Y., Alnakhli, Y. O., Jia, S., Yin, A., Alhuzimi, E., Alsaihati, B., Al-Owayyed, S., Zhao, D., Zhang, S., Al-Otaibi, N., Sun, G., Majrashi, M., Li, F., Tala, Wang, J., Yun, Q., Alnassar, N. A., Wang, L., Yang, M., Al-Jelaify, R. F., Liu, K., Gao, S., Chen, K., Alkhaldi, S. R., Liu, G., Zhang, M., Guo, H. & Yu, J. 2013. Genome sequence of the date palm Phoenix dactylifera L. Nature Communications 4(1): 1-9. https://doi.org/10.1038/ncomms3274
Beccari, O. 1918. Asiatic Palms-Lepidocaryeae: part 3: The species of the genera Ceratolobus, Calospatha, Plectocomia, Plectocomiopsis, Myrialepis, Zalacca, Pigafettia, Korthalsia, Metroxylon and Eugeissona. Annals of the Royal Botanic Garden, Calcutta 12: 156-195.
Benz,
B.R., Rhode, J.M. & Cruzan, M.B. 2007. Aerenchyma development and elevated
alcohol dehyrogenase activity as alternative responses to hypoxic soils in Piriqueta
caroliniana complex. American Journal of Botany 94(4): 542-550.
Bintoro,
M.H., Iqbal Nurulhaq, M., Pratama, A.J., Ahmad, F. & Ayulia, L. 2018.
Growing area of sago palm and its environment. In Sago Palm Multiple
Contributions to Food Security and Sustainable Livelihoods, edited by
Ehara, H., Toyoda, Y. & Johnson, D.V. Singapore: Springer Nature. pp.
17-30.
Boocock,
J., Chagné, D., Merriman, T.R. & Black, M.A. 2015. The distribution and
impact of common copy-number variation in the genome of the domesticated apple,
Malus x domestica Borkh. BMC Genomics 16: 848.
https://doi.org/10.1186/s12864-015-2096-x
Boonsermsuk,
S., Anai, T., Hasegawa, K. & Hisajima, S. 1997. Variation in random
polymorphic DNA of sago palm (Metroxylon Spp.) in Thailand. Japanese
Journal of Tropical Agriculture 41(2): 89-92.
Bujang,
K. 2018. Production, purification, and health benefits of sago sugar. In Sago
Palm: Multiple Contributions to Food Security and Sustainable Livelihoods,
1st ed., edited by Ehara, H. Johnson, D.V. & Toyoda, Y. Singapore: Springer
Nature. 1: 229-308.
Campos,
E.V.R., Ratko, J., Bidyarani, N., Takeshita, V. & Fraceto, L.F. 2023.
Nature-based herbicides and micro-/nanotechnology fostering sustainable
agriculture. ACS Sustainable Chemistry & Engineering 11(27):
9900-9917. https://doi.org/10.1021/acssuschemeng.3c02282
Dolatabadian,
A., Patel, D.A., Edwards, D. & Batley, J. 2017. Copy number variation and
disease resistance in plants. Theoretical and Applied Genetics 130(1):
2479-2490.
Ehara,
H., Yamamoto, T., Tsuchiya, T., Hitoshi, N., Dowe, J.L., McClatchey, W.C.,
Mishima, T., Itaya, A., Mizota, C., Pasolon, Y.B., Ala, P., Tuiwawa, M.,
Naikatini, A., Rounds, I.A., Foliga, T., Lui, S. & Kwan, S. 2019.
Phylogenetic study of metroxylon palms in Southeast Asia and Oceania based on
5S NrDNA spacer sequence data. Sago Palm 26(2): 37-43.
Ellen,
R. 2006. Local knowledge and management of sago palm (Metroxylon sagu Rottboel) diversity in South Central Seram, Maluku, Eastern Indonesia. Journal
of Ethnobiology 26(2): 258-298.
Enguito,
R.Z.C. & Novero, A.U. 2018. Genetic variation of sago palm (Metroxylon
sagu Rottb.) samples from Mindanao, Philippines using internal transcribed
spacer analysis. Malaysian Applied Biology 47(3): 39-48.
Flach,
M. 1997. Sago Palm: Metroxylon sagu Rottb.: Promoting the Conservation and
Use of Underutilized and Neglected Crops. 1st ed. Vol. 13. Rome: International
Plant Genetic Resources Institute.
Fukazawa,
J., Miyamoto, C., Ando, H., Mori, K. & Takahashi, Y. 2021. DELLA-GAF1
complex is involved in tissue-specific expression and gibberellin feedback
regulation of GA20ox1 in Arabidopsis. Plant Molecular Biology 107(3):
147-158.
Hirao,
K., Kondo, T., Kainuma, K. & Takahashi, S. 2018. Starch properties and uses
as food for human heatlh and welfare. In Sago Palm: Multiple Contributions
to Food Security and Sustainable Livelihoods, 1st ed., edited by Ehara, H.,
Johnson, D.V. & Toyoda, Y. 1: 285-288. Singapore: Springer Nature.
Hussain,
H., Edward-Atit, A.S., Julaihi, N., Tommy, R., Nisar, M., Hamdan, N. &
Ehara, H. 2022. Identification of differentially expressed transcripts for
trunk formation in sago palm using annealing control primer genefishing
technique. Journal Pf Applied Biology and Biotechnology 10(2): 2-4.
Hussain,
H., Mustafa Kamal, M., Al-Obaidi, J.R., Hamdin, N.E., Ngaini, Z. & Mohd-Yusuf,
Y. 2020. Proteomics of sago palm towards identifying contributory proteins in
stress-tolerant cultivar. Protein Journal 39(1): 62-72.
https://doi.org/10.1007/s10930-019-09878-9
Hussain,
H., Yan, W-J., Ngaini, Z., Julaihi, N., Tommy, R. & Ahmad Bhawani, S. 2020.
Differential metabolites markers from trunking and stressed non-trunking sago
palm (Metroxylon sagu Rottb.). Current Chemical Biology 14(4):
262-278. https://doi.org/10.2174/2212796814999200930120925
Ibrahim,
E.R., Hossain, M.A. & Roslan, H.A. 2014. Genetic transformation of Metroxylon
sagu (Rottb.) cultures via Agrobacterium -Mediated and particle
bombardment. BioMed Research International 2014: 348140.
https://doi.org/10.1155/2014/348140
Jamel,
B., Hussain, M.H., Salleh, M.A. & Busri, N. 2011. Isolation and
characterization of the GA 20-Oxidase CDNA from sago palm (Metroxylon sagu Rottb.). Asia-Pacific Journal of Molecular Biology and Biotechnology 19(2): 83-93.
Jiao,
Y., Zhao, H., Ren, L., Song, W., Zeng, B., Guo, J., Wang, B., Liu, Z., Chen,
J., Li, W., Zhang, M., Xie, S. & Lai, J. 2012. Genome-wide genetic changes
during modern breeding of maize. Nature Genetics 44(7): 812-815.
https://doi.org/10.1038/ng.2312
Kjær,
A., Barfod, A.S., Asmussen, C.B. & Seberg, O. 2004. Investigation of genetic
and morphological variation in the sago palm (Metroxylon sagu;
Arecaceae) in Papua New Guinea. Annals of Botany 94(1): 109-117.
https://doi.org/10.1093/aob/mch112
Kumar,
R.A., Oldenburg, D.J. & Bendich, A.J. 2014. Changes in DNA damage,
molecular integrity, and copy number for plastid DNA and mitochondrial DNA
during maize development. Journal of Experimental Botany 65(22):
6425-6439. https://doi.org/10.1093/jxb/eru359
Lam,
H-M., Xu, X., Liu, X., Chen, W., Yang, G., Wong, F-L., Li, M-W., He, W., Qin, N.,
Wang, B., Li, J., Jian, M., Wang, J., Shao, G., Wang, J., Sun, S.S.M. &
Zhang, G. 2010. Resequencing of 31 wild and cultivated soybean genomes
identifies patterns of genetic diversity and selection. Nature Genetics 42(12): 1053-1059. https://doi.org/10.1038/ng.715
Lim, H.,
Kobayashi, M.J., Marsoem, S.N., Irawati, D., Kosugi, A., Kondo, T. & Tani,
N. 2023. Transcriptomic responses of oil palm (Elaeis guineensis) stem
to waterlogging at plantation in relation to precipitation seasonality. Frontiers
in Plant Science 14: 1213496. https://doi.org/10.3389/fpls.2023.1213496
Lim,
L.W.K., Chung, H.H. & Hussain, H. 2020a. Complete chloroplast genome
sequencing of sago palm (Metroxylon sagu Rottb.): Molecular structures,
comparative analysis and evolutionary significance. Gene Reports 19:
100662. https://doi.org/10.1016/j.genrep.2020.100662
Lim,
L.W.K., Chung, H.H. & Hussain, H. 2020b. Organellar genome copy number
variations and integrity across different organs, growth stages, phenotypes and
main localities of sago palm (Metroxylon sagu Rottboll) in Sarawak,
Malaysia. Gene Reports 21: 100808.
https://doi.org/10.1016/j.genrep.2020.100808
Lim,
L.W.K., Chung, H.H., Hussain, H. & Gan, H.M. 2021. Genome survey of sago
palm (Metroxylon sagu Rottboll). Plant Gene 28: 100341.
https://doi.org/10.1016/j.plgene.2021.100341
Lim,
L.W.K., Lau, M.M.L., Chung, H.H., Hussain, H. & Gan, H.M. 2022. First
high-quality genome assembly data of sago palm (Metroxylon sagu Rottboll). Data in Brief 40: 107800.
https://doi.org/10.1016/j.dib.2022.107800
Mace,
E.S., Tai, S., Gilding, E.K., Li, Y., Prentis, P.J., Bian, L., Campbell, B.C.,
Hu, W., Innes, D.J., Han, X., Cruickshank, A., Dai, C., Frère, C., Zhang, H.,
Hunt, C.H., Wang, X., Shatte, T., Wang, M., Su, Z., Li, J., Lin, X., Godwin,
I.D., Jordan, D.R. & Wang, J. 2013. Whole-genome sequencing reveals
untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nature
Communications 4(1): 2320. https://doi.org/10.1038/ncomms3320
Mahmoud, A. 2021. Genome Sequence of Oil Palm. In Oil Crop Genomics edited by Tombuloglu, H., Unver, T., Tombuloglu, G., Hakeem, K.R. Springer, Cham. https://doi.org/10.1007/978-3-030-70420-9_6
Miao, H.,
Jiang, B., Chen, S., Zhang, S., Chen, F., Fang, W., Teng, N. & Guan, Z.
2010. Isolation of a Gibberellin 20-Oxidase CDNA from and characterization of
its expression in chrysanthemum. Plant Breeding 129(6): 707-714.
https://doi.org/10.1111/j.1439-0523.2009.01736.x
Nisar,
M. & Hussain, H. 2022. Assessment of the genetic variations of sago palm Metroxylon
Sagu in three regions of Sarawak, Malaysia using amplified fragment length
polymorphism (AFLP) marker. Chemical and Biological Technologies in
Agriculture 9: 46. https://doi.org/10.1186/s40538-022-00315-1
Nishimura,
Y. 2018. Sago Starch: Transformation of extraction and consumption processes in
traditional Indonesian societies. In Sago Palm: Multiple Contributions to
Food Security and Sustainable Livelihoods, 1st ed., edited by Ehara, H.,
Johnson, D.V. & Toyoda, Y. Singapore: Spinger Nature. 1: 221-230.
Novero,
A. 2012. Recent advances in sago palm (Metroxylon sagu Rottboell)
micropropagation. In Frontiers on Recent Developments in Plant Science,
edited by Goyal, A. & Maheshwari, P. Lethbridge, Canada: Bentham Science
Publishers. pp. 60-66. https://doi.org/10.2174/978160805403911201010060
Pati,
P., Gupta, M.K., Gouda, G. & Rathore, S.K. 2021. Conservation of rice
germplasm by bioinformatics strategy. In Applications of Bioinformatics in
Rice Research, edited by Gupta, M.K. & Behera, L. Singapore: Springer.
pp. 315-332. https://doi.org/10.1007/978-981-16-3997-5_15
Phillips,
A.L., Ward, D.A., Uknes, S., Appleford, N.E.J., Lange, T., Huttly, A.K.,
Gaskin, P., Graebe, J.E. & Hedden, P. 1995. Isolation and expression of
three Gibberellin 20-Oxidase CDNA clones from Arabidopsis. Plant Physiology 108(3): 1049-1057. https://doi.org/10.1104/pp.108.3.1049
Prunier,
J., Giguère, I., Ryan, N., Guy, R., Soolanayakanahally, R., Isabel, N., MacKay,
J. & Porth, I. 2019. Gene copy number variations involved in balsam poplar
(Populus balsamifera L.) adaptive variations. Molecular Ecology 28(6): 1476-1490. https://doi.org/10.1111/mec.14836
Purwoko,
D., Cartealy, I.C., Tajuddin, T., Dinarti, D. & Sudarsono. 2019. SSR
Identification and marker development for sago palm based on NGS genome data. Breeding
Science 69(1): 1-10. https://doi.org/10.1270/jsbbs.18061
Roslan,
H.A. & Anji, S.B. 2011. Characterization of inflorescence-predominant
chitinase gene in Metroxylon sagu via differential display. 3 Biotech 1(1): 27-33. https://doi.org/10.1007/s13205-011-0004-x
Roslan,
H.A., Hossain, M.A. & Gerunsin, J. 2017. Molecular and 3D-structural
characterization of fructose-1,6-bisphosphate aldolase derived from Metroxylon
sagu. Brazilian Archives of Biology and Technology 60(0): e17160108.
https://doi.org/10.1590/1678-4324-2017160108
Roslan,
H.A., Hossain, M.A., Ngieng, N.S. & Hussaini A. 2020. Sago palm genome size
estimation via real-time quantitative PCR. Current Applied Science and
Technology 20(2): 208-216.
Shi, H.,
Liu, W., Yao, Y., Wei, Y. & Chan, Z. 2017. Alcohol dehydrogenase 1
(ADH1) confers both abiotic and biotic stress resistance in Arabidopsis. Plant Science 262: 24-31. https://doi.org/10.1016/j.plantsci.2017.05.013
Sieber,
A.N., Longin, C.F.H., Leiser, W.L. & Würschum, T. 2016. Copy number
variation of CBF-A14 at the Fr-A2 locus determines frost tolerance in winter
durum wheat. Theoretical and Applied Genetics 129(6): 1087-1097.
Tan, K.
1983. The Swamp-Sago Industry in West Malaysia: A Study of the Sungei Batu
Pahat Floodplain. Pasir Panjang, Singapore: Institute of Southeast Asian
Studies.
Varshney,
R.K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., Zhang, H., Zhao, Y., Wang, X., Rathore, A., Srivastava, R.K., Chitikineni, A., Fan, G., Bajaj, P., Punnuri, S., Gupta, S.K., Wang, H., Jiang, Y., Couderc, M., Katta, M.A.V.S.K., Paudel, D.R., Mungra, K.D., Chen, W., Harris-Shultz, K.R., Garg, V., Desai, N., Doddamani, D., Kane, N.A., Conner, J.A., Ghatak, A., Chaturvedi, P., Subramaniam, S., Yadav, O.P., Berthouly-Salazar, C., Hamidou, F., Wang, J., Liang, X., Clotault, J., Upadhyaya, H.D., Cubry, P., Rhoné, B., Gueye, M.C., Sunkar, R., Dupuy, C., Sparvoli, F., Cheng, S., Mahala, R.S., Singh, B., Yadav, R.S.,
Lyons, E., Datta, S.K., Hash, C.T., Devos, K.M., Buckler, E., Bennetzen, J.L., Paterson, A.H., Ozias-Akins, P., Grando, S., Wang, J., Mohapatra, T., Weckwerth, W., Reif, J.C., Liu, X., Vigouroux, Y.
& Xu, X. 2017.
Pearl millet genome sequence provides a resource to improve agronomic traits in
arid environments. Nature Biotechnology 35: 969-976.
https://doi.org/10.1038/nbt.3943
Ventura, I., Brunello, L., Iacopino, S., Valeri, M.C.,
Novi, G., Dornbusch, T., Perata, P. & Loreti, E. 2020. Arabidopsis phenotyping reveals the importance
of alcohol dehydrogenase and pyruvate decarboxylase for aerobic plant growth. Scientific
Reports 10: 16669. https://doi.org/10.1038/s41598-020-73704-x
Wang,
Wensheng, Ramil Mauleon, Zhiqiang Hu, Dmytro Chebotarov, Shuaishuai Tai,
Zhichao Wu, Min Li, et al. 2018. “Genomic Variation in 3,010 Diverse Accessions
of Asian Cultivated Rice.” Nature 557 (7703): 43–49. https://doi.org/10.1038/s41586-018-0063-9.
Wee,
C.C. & Roslan, H.A. 2012. Isolation of alcohol dehydrogenase CDNA and basal
regulatory region from Metroxylon sagu. International Scholarly
Research Network Molecular Biology 2012: 839427.
https://doi.org/10.5402/2012/839427
Wei, C.,
Chen, J. & Kuang, H. 2016. Dramatic number variation of R genes in
solanaceae species accounted for by a few R gene subfamilies. PLoS ONE 11(2): e0148708. https://doi.org/10.1371/journal.pone.0148708
Withanage,
S.P., Hossain, M.A., Kumar, M.S., Roslan, H.A., Abdullah, M.P., Napis, S.B.
& Ab Shukor, N.A. 2015. Overexpression of Arabidopsis thaliana gibberellic acid 20 oxidase (AtGa20ox) gene enhance the vegetative growth and
fiber quality in kenaf (Hibiscus cannabinus L.) plants. Breeding
Science 65(3): 177-191. https://doi.org/10.1270/jsbbs.65.177
Yong,
C.M.R., Sobeng, Y., Zaini, F. & Busri, N. 2018. Suitability of peat swamps
areas for commercial production of sago palms: The Sarawak experience. In Sago
Palm: Multiple Contributions to Food Security and Sustainable Livelihoods,
edited by Ehara, H., Toyoda, Y. & Johnson, D.V. Singapore: Springer Nature.
pp. 91-108.
Zhang,
M., Ma, Y., Zheng, X., Tan, B., Ye, X., Wang, W., Zhang, L., Li, J., Li, Z.,
Cheng, J. & Feng, J. 2022. The distribution of bioactive gibberellins along
peach annual shoots is closely associated with PpGA20ox and PpGA2ox expression
profiles. BMC Genomics 23(1): 730.
https://doi.org/10.1186/s12864-022-08943-5
Zhou, Y.
& Underhill, S.J.R. 2015. Breadfruit (Artocarpus altilis)
gibberellin 20-oxidase genes: Sequence variants, stem elongation and abiotic
stress response. Tree Genetics and Genomes 11: 84. https://doi.org/10.1007/s11295-015-0909-3
*Pengarang untuk
surat-menyurat; email: hhasnain@unimas.my
|